Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases
Lecture 4

Indexing II: Tree-Structured

Indexing and ISAM Indexes
Chap. 10.1-10.8: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl446

4-1

http://www2.cs.ucy.ac.cy/~dzeina/

Lecture Outline
Tree-Structured Indexing

« Note: In prior lectures we gave an
overview of Storage and Indexing. In
this and the following lecture we will
explore Indexing in more detail. Query Optimization

« 10.1) Introduction to Tree Indexes i o
« 10.2) The ISAM Index

— Structure of Nodes in Trees, Disk Space Management
— Binary Search over Sorted Files,
— Binary vs. N-ary Search Trees,

— ISAM: Indexed Sequential Access Method
(Outline, Search, Insert, Delete, Examples)

Files and Access Methods

4-2

Indexes (Access Methods)
(Eupetnpla Aeutepeuouocac Mvrnung)

* An index Is a data structure that has index
records that point to certain data records.

* An index can optimize certain kinds of
retrieval operations (depending on the index).

 Definitions

— Index Page (ZeAideg EupeTnpiou) vs. Data Pages (ZeAideg

Agdopévwyv): Index Pages store index records to data

records. Both reside on disk because we might have many

ndexPace | of these pages!
“® |_ pataRecord (Eyypaon Aedopévwy):. Stores the actual

data e.g., (59,Mike,3.14) .

mrage | — Index Record (Eyypaen Eupernpiou): Stores the RID of
00 another index record (then called index entry) or a data
record (then called data entry)

4-3

Data Entry k* Examples
(Mapadciypara Karaxwpnong k*)

 Alternative 1: <k>

Results in a 59. Mike, 3.14 Index Data Entry
Index File Organization!

 Alternative 2: <k, RID>

59, RID#10 Index Data Entry

59 Mike 3.14 Data Record
RID#10

« Alternative 3: <k, [RID,...,RID]>

59, RID#10, RID#61, #RID82 Index Data Entry

/ ___________ e g

59 Mike 3.14 59 Chris 33.14 59 Jim 5314 Data Record
RID#10 RID#61 RID#82

4-5

Introduction to Tree Structures
(Elcaywyn og Aevopikec AOUEQ)

 We will study two Tree-based structures:

— ISAM: A static structure (does not grow or shrink).
« Suitable for situations where the target relation does not
change frequently;

« Copes better with Locking Protocols (explained later),
because the index/data entries are statically allocated, thus
are not required to be locked during concurrent access.

— B+ tree: A dynamic data structure that adjusts efficiently under
Inserts and deletes.

* Most widely used tree structure in DBMS systems because it
copes efficiently with updates! and because the cost for range
and equality searches is good.

« Will be covered subsequently in this lecture!

4-6

Structure of Nodes In Trees
(Aoun KouPou oe AEvopa)

« Same Structure for ISAM and B+T

rees (we shall

utilize Alt.1 with keyonly unless otherwise noted)
« M Keys and M+1 Pointers to children (either

Index entries or data entries)

rhdex-eniry

Po| K1|Pq1| K2| Py

) ! !
« Example with M=2

20

33

/|

10*| 15* 20*

27*

33*

37*

4-7

ISAM: Indexed Sequential Access Method

« A simple tree structure utilized by DBMS systems
« Constructed Statically at index creation time.

« Consists of Non-leaf (index entries, allocated at creation
time) and Leaf pages (data entries) — Alternative 1.

« Data Entries : 1) Primary Pages (allocated at creation
time sequentially) or i) Overflow Pages (allocated during

Insertions)
Non-leaf
Pages
e —7 % 7y 7y 74y
P:;lesl D | ::D I:; I:Yj
|:| Overflow ------- > |:| //,x"/
page

Primary pages 4-10

Outline of Operation

(Avaokotrnon /A&iToupyiacg)

Search: Start at root; use key comparisons to go to leaf.

Cost:L_log - Nl;F=#entries_per_indexPage+1, N=#leafpgs

« Recall that data Entries are allocated sequentially when the
tree is created.

— Consequently, there is no need for next-leaf-page’ pointers (i.e., we

can move from a leaf pa an adjacent page by calculating an

offset)

P

20

/

33

/ |

\

40

~N

51

63

10*

15*

20*

27*

33*

37*

S51*

55* | ‘ 63*

97*

4-11

Inserting to an ISAM Index
(Elcaywyec oto Eupetnpio ISAM)

Insert: Find the appropriate leaf data entry and assign it to
there. If full, allocate an overflow page and put it there

After Insertin% 23* 48* 41* 42* ...
ROOt —~—au

40

Index j R
Pages / \
20 33 51| (63
/
Primary \
Leaf 10* | 15* 20% | 27+ 33+ | 37+ 40*‘ 46 51¢ | 55¢ | | 63+ | 97
Pages \ \
1})
Overflow 23* 48* | 41*
Pages)

4-12

Deletions from an ISAM Index
(Alaypapéc aTtro 1o Eupetrpio ISAM)

primary |eaj

€sS.

Delete: Find and remove from leaf; if overflow page gets
empty then de-allocate then given page. Never deallocate

~

| 20| s
/ v

,‘
Lo [o | [[or| [ar] o] | aof s [((sp])os]

[sl]]

=)

eTe] SN T [T
(=D] /

... Then Deleting

/

Root

\

40

T~

63

42*, 51*, 97~

10*

15*

20*

27*

33*

37*

40*

46*

55*

63*

> Note that 51* appears in index levels, but not in leaf! Static tree structure:

l

23*

l

48*

41*

inserts/deletes affect only leaf pages! ...Will be useful for concurrency control

(locking protocol)

Lecture Outline
B+ Trees: Structure and Functions

* 10.3) Introduction to B+ Trees

* 10.4-10.6) B+Tree Functions:
Search / Insert / Delete with Query Optmization

and Execution

Examples Belgtongl Qperators. _

Files and Access Methods

« 10.7) B+ Trees in Practice. Butter Management
— Prefix-Key Compression
(MpoBepaTikn 2uptrieon KAEIOIWV)

— Bulk Loading B+Trees (Madikn
Eicaywyn AedouEvwy)

Disk Space Management

4-14

Introduction to Tree Structures
(Elcaywyn oe AevopikeC AOUEQ)

 We will study two Tree-based structures:
— ISAM: A static structure (does not grow or shrink).
« Suitable when changes are infrequently;
« Copes better with Locking Protocols

— B+ tree: A dynamic data structure which adjusts
efficiently under inserts and deletes.
« Most widely used tree structure in DBMS systems!
« Has similarly to ISAM, nodes with a high fan-out (f) (~133
children per node).
« Similar to a Btree but different...
— In a B+Tree, data entries are stored at the leaf level.

— A Btree allows search-key values to appear only once;
eliminates redundant storage of search keys (not suitable for DB
apps where more index entries yield better search performance) , , /!

B+ Tree: Introductory Notes
(B+Tree: Eicaywyikec Emionuavoeiq)

* Insert/delete at log - N cost; keep tree balanced
(icoCuyiouévo). (F =fanout, N = # leaf pages)

« Minimum 50% occupancy (except for root). Each node
contains d <= m <= 2d entries. The parameter d Is

called the order of the tree (BaBuoég Tou dEvopou).

« Supports equality and range-searches (avalntnoeig
100TNTOC Kal dlaoTrinaTog) efficiently.

d:2, f:3 Index Entries

22 1134 (Direct search)

I

Data Entries
("Sequence set") 4-16

Example B+ Tree
(Mapadeiyua B+Tree)

Search begins at root, and key comparisons direct it to a
leaf (as in ISAM).

Search for 5*, 15*, all data entries >= 24* ...
Root~—,

7 T

3* | 5% | 7+ | |14%| 16 19%| 20*| 22* 24| 27*| 29+ 33| 34+ | 38* | 39*

Based on the search for 15*, we know its not in the tree!

Note that leaf pages (teppaTikoi koupor) are linked
together in a doubly-linked list (as opposed to ISAM).

That happens because ISAM nodes are allocated
sequentially during Index construction time
— consequently, no need to maintain the next prev-next-pointer.

17

B+ Trees In Practice
(B+Trees otnv lNpacn)
Typical order (d): 100 (ie100<=#children<=200)

Typical fanout (f) = 133 d=2, f=3
— Typical fill-factor: 67% (133/200) |~ f“
Typical capacities: \

- Height 4: 1334 = 312,900,700 records
- Height 3: 1333 = 2,352,637 records

Can often hold top levels in buffer pool:
— Level 1 =133%=1 page = 8 Kbytes
- Level 2 =1331 =133 pages = ~1 MB (1064 KB)

— Level 3=133%2=17,689 pages = ~133 MB
(141,512KB)

4-18

B+ Tree Insertion Algorithm
(AAYOpIOuOC Elcaywync oto B+Tree)

1. Find correct leaf L.
2. Put data entry onto R 2

00T~

3 Assume

|| 13]]| 17

x| =[] we Insert 8

Lz 2] =]

T T =

22{ ﬁ_’lk24{ 27* 29" ﬁ_’lk33’| 34{ 38’| 391

- If L has enough space, done!

- Else split (diauoipacn) L (into L and a new node L2)

» Redistribute (Avakatévelpe) entries evenly between L and L2, copy
up (Avriypa@n-fMpég-Ta-NMavw) middle key.

\1' g * Insertindex entry pointing to L2 into parent of L.

2*

3*

5*

7*

L

* 3*

5

/"

Copy
- QQ5
AR
* 7* 8*

L2

* Copy up 5: cannot
just push-up 5 as
every data entry
needs to appear in a
leaf node

‘Problem: 5 won't fit
in parent of L2. (see
next slide)

4-19

Copy

up

- If Parent has enough space, done!

B+ Tree Insertion Algorithm
(AAyOpIBuoC Elcaywync oto B+Tree)

3. A parent needs to recursively Push-Up (Mpow6non-lpog-

Mavw) the middle key until the insertion is successful i.e.,

— No need to copy-up as the latter will generate redundant index
entries.

- Else split (drauoipacn) Parent
» Redistribute (Avakartévelue) entries evenly, push up middle key.

4. Splits “grow” tree; root split increases height (Uyog)
- Tree growth: gets wider or one level taller at top.

*

17% 24*

30*

13
27

Parent

\
N

~

—

e

/

17| |

Push (not

\ T copy)-up 17

* [13%

24*

30*

Parent

4-20

Parent2

Example B+ Tree After Inserting 8*

ATtroteAeoua Elcaywync 8*

ROON

‘(17
.~

-

N,

/

\

5) 13 24 30
/ /N . , J
2% 3* | S5*)7* 8* 14*] 16* 1979 20% 22* 24*| 27*29* 33*[34+* 38* 39*
N

Root was split => That lead to increase in height from 1 to 2.
Minimum occupancy (d, i.e., 50%) is guaranteed in both leaf and

Index pages splits (for root page this constraint is relaxed)

(adeA@ikoi kOuPol); however, this is usually not done in practice. The

Split occurs when adding 1 key to a node that is full (has 2d entries).
Thus we will end up with two nodes, one with d and one with d+1 entries.

Can avoid split by re-distributing entries between siblings —

borrowing practice is adopted only during deletions (see next).

4-21

B+ Tree Deletion Algorithm
(AAYOpIBuOC Alaypagpnc armro B+Tree)

« Start at root, find leaf L where entry belongs.
— E.g., deleting 19 then 20

« Remove the entry K* (not respective index entries).
— If L is at least half-full, done! (e.g., after deleting 19%)

- If L has only d-1 entries, (e.g., after deleting 20%)

« Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L). (e.g., borrow 24* and update)

« If re-distribution_fails, merge L and sibling (see slide 12)

Root

[17

4) Copy-Up
5 |, 13] 24|| 30|] || 27* to
2+ 3+ 5 7| 8* 141 161 19F 20t 22 241 271 294 331 341 381 397
A A
4-22

12) 3) Borrow 24*

(Mapadeiypa Alaypagnc amo B+Tree)
Ny

/ |
/N

B+ Tree Deletion Example

17

5

13

x& K‘&
* 14* 16* 1

Initial Tree

24

30

y,

.

[‘&
2% 3* 5| 7| 8 91 204 227 24*| 27* 29* 33% 34*% 38* 39*
Delete
19 20 Root__ .
’ - Final Tree
5 13 27 30
4 N\ b N
23 é‘\; 7| 8 14*| 16+ | 221 247 27*(29* 334 34+ 38+[39*

4-23

B+ Tree Deletion Algorithm
(AAYOpIOuoc Alaypagn atrto B+Tree)
* If re-distribution after delete fails then merge L and
sibling (e.q., delete 24 => can’t borrow => merge)

 Now we also need to adjust parent of L (pointing
to L or sibling). (i.e., delete 27)

« Merge could propagate to root, decreasing height.
Ro% G\

Hl 2) 30

Y
5 13 WT 33 /
N b 3 y ¥~ ™
*

/rﬂ }‘ T 7‘_ }‘ 22* [27* | 29 33* [34* | 38* | 39*
21 3 51 71 87 14*14* 29*24* 271*29* 33*34*34*39*

delete 247 Merged {22} with
{27,29} 4-24

Merging propagates to sink
(H Zuyxwveuon diadidetar péxpl Tn pida)

But ... occupancy Factor of L

dropped below 50% (d=
which is not acceptable.

2)

Thus, L needs to be either i)
merged (ocuyxwveuTei) with

its sibling {5,13}
or i) redistributed

(avakaTavepnOei) with its

sibling (next slide)

ROM

17

30

2*

3*

144

16%

22%27%

297

33

344

387

39%

Root

| S

| 13

17

30

* 16*

*| 27

29*

33*

34*

38*

39*

4-25

Summary of Bulk Loading
(Malikr] Eicaywyr Asdopévwy)

Scenario: We want to construct a B+Tree on a pre-
existing collection (u@loTauevn cuAAoyn) of records

Option 1. multiple (individual) inserts.
- Slow and does not give sequential storage of leaves.

Option 2: Bulk Loading (Malikn Eicaywyn).
— ldea: Sort all data entries, insert pointer to first (leaf) page in a new (root).
- Effect: Splits occur only on the right-most path from the root to leaves.

- Advantages: i) Fewer I/Os during build and ii) Leaves will be stored
sequentially (and linked, of course).

—
-

N

Root .) . .
| Sorted pages of data entries not ver in B+ tree
i
.'rl;' * -7

_;.': — I - —

EL 4-“'5-’9- !1nﬂ11?l12-13- 20422+

23314 35436+ [38%41 |44+
| |

|

4-29

Bulk Loading with Example

(Madikr

lcaywyn pe lMNap

=

AdEIYuQ)

Data entry pages not vet in B+ tree

W

AV

EL RN L 6 1G*11*I 2™ 1%

20%22+

23% 31j 35#/36% Jﬂllﬁ 44+

Main Idea of Bulk Loading:
Splits occur only on the right-

s _
Root 20T] most path from the root the
\ leaf level
| 6 [E 12 ‘ Data entry pages not vet in B+ tree
R PN DN l -
3% 4= | 6%| 9% [10%/11# 1:*13-[20%22+ :3'311 35*35*‘ 33:]11* e

4-30

