
4-1
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 4

Indexing II: Tree-Structured

Indexing and ISAM Indexes
Chap. 10.1-10.8: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl446

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

4-2
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
Tree-Structured Indexing

• Note: In prior lectures we gave an
overview of Storage and Indexing. In
this and the following lecture we will
explore Indexing in more detail.

• 10.1) Introduction to Tree Indexes

• 10.2) The ISAM Index
– Structure of Nodes in Trees,

– Binary Search over Sorted Files,

– Binary vs. N-ary Search Trees,

– ISAM: Indexed Sequential Access Method
(Outline, Search, Insert, Delete, Examples)

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

4-3
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Indexes (Access Methods)
(Ευρετήρια Δευτερεύουσας Μνήμης)

• An index is a data structure that has index
records that point to certain data records.

• An index can optimize certain kinds of
retrieval operations (depending on the index).

• Definitions
– Index Page (Σελίδες Ευρετηρίου) vs. Data Pages (Σελίδες

Δεδομένων): Index Pages store index records to data
records. Both reside on disk because we might have many
of these pages!

– Data Record (Εγγραφή Δεδομένων): Stores the actual
data e.g., (59,Mike,3.14) .

– Index Record (Εγγραφή Ευρετηρίου): Stores the RID of
another index record (then called index entry) or a data
record (then called data entry)

Index Page

Data Page

Index Page

4-5
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Data Entry k* Examples
(Παραδείγματα Καταχώρησης k*)

• Alternative 1: <k>

• Alternative 2: <k, RID>

• Alternative 3: <k, [RID,…,RID]>

59, Mike, 3.14 Index Data Entry

59, RID#10

59 Mike 3.14

Index Data Entry

RID#10

Data Record

59, RID#10, RID#61, #RID82

59 Jim 53.14

Index Data Entry

Data Record 59 Mike 3.14 59 Chris 33.14

Results in a
Index File Organization!

RID#10 RID#61 RID#82

4-6
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Introduction to Tree Structures

(Εισαγωγή σε Δενδρικές Δομές)
• We will study two Tree-based structures:

– ISAM: A static structure (does not grow or shrink).

• Suitable for situations where the target relation does not

change frequently;

• Copes better with Locking Protocols (explained later),

because the index/data entries are statically allocated, thus

are not required to be locked during concurrent access.

– B+ tree: A dynamic data structure that adjusts efficiently under

inserts and deletes.

• Most widely used tree structure in DBMS systems because it

copes efficiently with updates! and because the cost for range

and equality searches is good.

• Will be covered subsequently in this lecture!

4-7
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Structure of Nodes in Trees
(Δομή Κόμβου σε Δένδρα)

• Same Structure for ISAM and B+Trees (we shall

utilize Alt.1 with keyonly unless otherwise noted)

• M Keys and M+1 Pointers to children (either

index entries or data entries)

• Example with M=2

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

10* 15* 20* 27* 33* 37*

20 33

4-10
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

ISAM: Indexed Sequential Access Method

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

• A simple tree structure utilized by DBMS systems

• Constructed Statically at index creation time.

• Consists of Non-leaf (index entries, allocated at creation

time) and Leaf pages (data entries) – Alternative 1.

• Data Entries : i) Primary Pages (allocated at creation

time sequentially) or ii) Overflow Pages (allocated during

insertions)

4-11
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Outline of Operation
(Ανασκόπηση Λειτουργίας)

• Search: Start at root; use key comparisons to go to leaf.

Cost:∟log F N˩;F=#entries_per_indexPage+1, N=#leafpgs

• Recall that data Entries are allocated sequentially when the

tree is created.

– Consequently, there is no need for `next-leaf-page’ pointers (i.e., we

can move from a leaf page to an adjacent page by calculating an

offset)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

4-12
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Inserting to an ISAM Index
(Εισαγωγές στο Ευρετήριο ISAM)

Root

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

23* 48* 41*

42*

After Inserting 23*, 48*, 41*, 42* ...

Insert: Find the appropriate leaf data entry and assign it to

there. If full, allocate an overflow page and put it there

4-13
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Deletions from an ISAM Index
(Διαγραφές από το Ευρετήριο ISAM)

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

 ... Then Deleting

42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

23* 48* 41*

42*

 Note that 51* appears in index levels, but not in leaf! Static tree structure:

 inserts/deletes affect only leaf pages! …Will be useful for concurrency control

(locking protocol)

Delete: Find and remove from leaf; if overflow page gets

empty then de-allocate then given page. Never deallocate

primary leaf pages.

4-14
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
B+ Trees: Structure and Functions

• 10.3) Introduction to B+ Trees

• 10.4-10.6) B+Tree Functions:
Search / Insert / Delete with
Examples

• 10.7) B+ Trees in Practice.

– Prefix-Key Compression
(Προθεματική Συμπίεση Κλειδιών)

– Bulk Loading B+Trees (Μαζική
Εισαγωγή Δεδομένων)

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

4-15
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Introduction to Tree Structures
(Εισαγωγή σε Δενδρικές Δομές)

• We will study two Tree-based structures:

– ISAM: A static structure (does not grow or shrink).

• Suitable when changes are infrequently;

• Copes better with Locking Protocols

– B+ tree: A dynamic data structure which adjusts

efficiently under inserts and deletes.

• Most widely used tree structure in DBMS systems!

• Has similarly to ISAM, nodes with a high fan-out (f) (~133

children per node).

• Similar to a Btree but different…

– In a B+Tree, data entries are stored at the leaf level.

– A Btree allows search-key values to appear only once;

eliminates redundant storage of search keys (not suitable for DB

apps where more index entries yield better search performance)

4-16
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree: Introductory Notes
(Β+Tree: Εισαγωγικές Επισημάνσεις)

• Insert/delete at log F N cost; keep tree balanced

(ισοζυγισμένο). (F = fanout, N = # leaf pages)

• Minimum 50% occupancy (except for root). Each node

contains d <= m <= 2d entries. The parameter d is

called the order of the tree (βαθμός του δένδρου).

• Supports equality and range-searches (αναζητήσεις

ισότητας και διαστήματος) efficiently.

Index Entries

Data Entries

("Sequence set")

(Direct search) 34 22

d=2, f=3

4-17
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Example B+ Tree
(Παράδειγμα B+Tree)

• Search begins at root, and key comparisons direct it to a

leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

•

• Based on the search for 15*, we know its not in the tree!

• Note that leaf pages (τερματικοί κόμβοι) are linked

together in a doubly-linked list (as opposed to ISAM).

• That happens because ISAM nodes are allocated

sequentially during Index construction time

– consequently, no need to maintain the next prev-next-pointer.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

4-18
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Trees in Practice
(Β+Trees στην Πράξη)

• Typical order (d): 100 (ie100<=#children<=200)

• Typical fanout (f) = 133

– Typical fill-factor: 67% (133/200)

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1330 = 1 page = 8 Kbytes

– Level 2 = 1331 = 133 pages = ~1 MB (1064 KB)

– Level 3 = 1332 = 17,689 pages = ~133 MB

(141,512KB)

34 22

d=2, f=3

4-19
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Insertion Algorithm
(Αλγόριθμος Εισαγωγής στο B+Tree)

1. Find correct leaf L.

2. Put data entry onto L.

– If L has enough space, done!

– Else split (διαμοίραση) L (into L and a new node L2)
• Redistribute (Ανακατένειμε) entries evenly between L and L2, copy

up (Αντιγραφή-Πρός-Τα-Πάνω) middle key.

• Insert index entry pointing to L2 into parent of L.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7*

8

L

8

8

• Copy up 5: cannot

just push-up 5 as

every data entry

needs to appear in a

leaf node

•Problem: 5 won’t fit

in parent of L2. (see

next slide)

2* 3* 5* 7* 8*

5

L L2

Copy

up 5

Assume

we insert 8

4-20
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Insertion Algorithm
(Αλγόριθμος Εισαγωγής στο B+Tree)

3. A parent needs to recursively Push-Up (Προώθηση-Προς-

Πάνω) the middle key until the insertion is successful i.e.,

– No need to copy-up as the latter will generate redundant index

entries.

– If Parent has enough space, done!

– Else split (διαμοίραση) Parent
• Redistribute (Ανακατένειμε) entries evenly, push up middle key.

4. Splits “grow” tree; root split increases height (ύψος)

– Tree growth: gets wider or one level taller at top.

5* 13* 24* 30*

17

Parent Parent2

13* 17* 24* 30*

Parent

Copy

up 5

Push (not

copy)-up 17

4-21
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Example B+ Tree After Inserting 8*

Αποτέλεσμα Εισαγωγής 8*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

 • Root was split => That lead to increase in height from 1 to 2.

• Minimum occupancy (d, i.e., 50%) is guaranteed in both leaf and

index pages splits (for root page this constraint is relaxed)

• Split occurs when adding 1 key to a node that is full (has 2d entries).

Thus we will end up with two nodes, one with d and one with d+1 entries.

• Can avoid split by re-distributing entries between siblings –

(αδελφικοί κόμβοι); however, this is usually not done in practice. The

borrowing practice is adopted only during deletions (see next).

4-22
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Deletion Algorithm

(Αλγόριθμος Διαγραφής απο B+Tree)

• Start at root, find leaf L where entry belongs.

– E.g., deleting 19 then 20

• Remove the entry Κ* (not respective index entries).

– If L is at least half-full, done! (e.g., after deleting 19*)

– If L has only d-1 entries, (e.g., after deleting 20*)

• Try to re-distribute, borrowing from sibling (adjacent node with

same parent as L). (e.g., borrow 24* and update)

• If re-distribution fails, merge L and sibling (see slide 12)

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

X

1) 3) Borrow 24*

4) Copy-Up

27* to

replace 24

X

2)

4-23
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Deletion Example

(Παράδειγμα Διαγραφής από B+Tree)

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Delete

19, 20

Initial Tree

Final Tree

4-24
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

B+ Tree Deletion Algorithm

(Αλγόριθμος Διαγραφή απο B+Tree)

• If re-distribution after delete fails then merge L and

sibling (e.g., delete 24 => can’t borrow => merge)

• Now we also need to adjust parent of L (pointing

to L or sibling). (i.e., delete 27)

• Merge could propagate to root, decreasing height.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

30

22* 27* 29* 33* 34* 38* 39*

delete 24* Merged {22} with

{27,29}

L

X

1)

L

2)

X

4-25
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Merging propagates to sink

(Η Συγχώνευση διαδίδεται μέχρι τη ρίζα)
• But … occupancy Factor of L

dropped below 50% (d=2)

which is not acceptable.

• Thus, L needs to be either i)

merged (συγχωνευτεί) with

its sibling {5,13}

• or ii) redistributed

(ανακατανεμηθεί) with its

sibling (next slide)

17 30

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root
13 5

L

2* 3*

Root

17

14* 16*

13 5

7* 5* 8* 22* 27*

30

33* 34* 38* 39* 29*

4-29
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Summary of Bulk Loading

 (Μαζική Εισαγωγή Δεδομένων)
• Scenario: We want to construct a B+Tree on a pre-

existing collection (υφιστάμενη συλλογή) of records

• Option 1: multiple (individual) inserts.
– Slow and does not give sequential storage of leaves.

• Option 2: Bulk Loading (Μαζική Εισαγωγή).
– Idea: Sort all data entries, insert pointer to first (leaf) page in a new (root).

– Effect: Splits occur only on the right-most path from the root to leaves.

– Advantages: i) Fewer I/Os during build and ii) Leaves will be stored

sequentially (and linked, of course).

4-30
EPL646: Advanced Database Systems - Demetris Zeinalipour (University of Cyprus)

Bulk Loading with Example

 (Μαζική Εισαγωγή με Παράδειγμα)

Main Idea of Bulk Loading:

Splits occur only on the right-

most path from the root the

leaf level

